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Abstract

In a companion paper, the extended stochastic central difference (ESCD) method was presented for
computation of responses of linear multi-degrees-of-freedom (mdof) systems under narrow band stationary
and nonstationary random excitations. The present paper is concerned with the generalization of the ESCD
method for computation of nonlinear mdof systems. The generalization is based on a combination of the
ESCD method with statistical linearization (SL) technique, modified adaptive time scheme (ATS), and time
coordinate transformation (TCT). Unlike the conventional SL technique, the generalized ESCD method is
applicable to mdof systems with large nonlinearities. Comparison is made of the computed results applying
the generalized ESCD method to those obtained by the Monte Carlo simulation (MCS). Excellent
agreements were obtained. It was observed that the proposed method is very efficient compared with the
MCS.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In the companion paper [1] the extended stochastic central difference (ESCD) method was
proposed as a viable alternative to large-scale computation of responses of multi-degrees-of-
see front matter r 2004 Elsevier Ltd. All rights reserved.
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freedom (mdof) linear systems under narrow band random excitations. It was found that the
proposed method has several advantageous features over existing techniques. This paper is a
sequel to the companion paper [1]. It presents a generalization of the ESCD method for
computation of responses of nonlinear systems under wide band and narrow band random
excitations. The novel feature of this generalized ESCD method is its combined use of the ESCD
method [1], statistical linearization (SL) technique [2], the modified adaptive time scheme (ATS)
[3], and the time coordinate transformation (TCT) for stiff systems [4]. For conciseness, in the
following the above novel approach is simply referred to as the generalized ESCD method.
In the next section the application of the SL technique for single degree-of-freedom (dof)

nonlinear systems excited by narrow band random disturbances is made. Numerical results are
presented to demonstrate the efficiency and accuracy of the generalized ESCD method. Once, the
superior features of the latter are established, it is applied to the response computation of mdof
nonlinear systems in Section 3. For tractability and without loss of generality, 2dof nonlinear
systems are considered. Section 4 includes concluding remarks.
2. Generalization of extended stochastic central difference for single degree-of-freedom nonlinear

oscillators

The lowest order symmetric nonlinear power series representation of an elastic system is the so-
called Duffing oscillator which has been applied to the analysis of many engineering systems [5].
In the latter reference, the excitations are wide band stationary and nonstationary random
excitations. Davies and Nandlall [6] applied the Fokker–Plank–Kolmogorov (FPK) equation
approach to a Duffing oscillator excited by a narrow band stationary random excitation. It was
shown that multiple values of the response could occur at some frequencies for very narrow
excitation bandwidths, but those values reduced to a single one as the bandwidth was increased.
In this section the ESCD method for narrow band random excitations presented in the

companion paper [1] for linear systems is applied in conjunction with the SL technique, modified
ATS and TCT to calculate the variance of response of a Duffing oscillator. In the approach
presented here, after applying the SL technique to the original governing equation an equivalent
linear governing equation is established. The present approach is different, from those applying
the conventional SL technique, in that the latter applies to systems with small nonlinearities, while
the presently proposed approach is applicable to systems with large nonlinearities. This is made
possible by the fact that the system nonlinear parameters are updated at every time step during the
computation. The following subsections include a brief description of the system inputs and
modified ATS, and an outline of the SL technique followed by numerical results in Section 2.4.

2.1. Interpolation of system inputs

Because the time step size depends on the natural frequency and the natural frequencies of the
filter and system are normally different, especially with nonlinear problems, the time step size of
the system is different from that of the filter in general. Thus, an output from the filter cannot be
directly used as an input to the system of interest since the time steps of the filter and the system
will not match. To resolve this problem, one can adopt the interpolation or extrapolation to
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adjust the time step of the output of the filter so that it can be applied to the computation of the
response of the system. Interpolation is computationally stable whereas it is possible for
extrapolation running into computational instability if over shooting occurs. Therefore, in this
investigation an interpolation strategy is applied. It will be demonstrated in the Section 2.4 that
this strategy can provide excellent results.

2.2. Modified adaptive time scheme in the generalized ESCD method

As mentioned earlier, the time step size depends on the natural frequency of the excited system.
In a nonlinear system, the natural frequency varies with the response, and therefore the time step
size has to be changed accordingly. The so-called ATS has been applied to deal with this situation
in systems under wide band random excitations [3]. In other words, while the equivalent natural
frequency is being updated at every time step, the time step size also has to be adjusted. Moreover,
what needs to be modified is that all terms in the ESCD method presented in Ref. [1] computed at
time steps prior to the current step and to be used in the current step also have to be adjusted in
order to suit the current time step. The terms are Ryðs � 1Þ;Gðs � 2Þ;Hðs � 2Þ;Rf ðs � 2Þ;N1y;N2y

and N3y: This becomes more critical in the generalized ESCD method for narrow band excitations
because the error coming from not only the system but also from the responses of the filter if the
adjustment was not conducted. The interpolation scheme is employed for this modification to the
original ATS and is referred to as the modified ATS.
It will be shown in Figs. 1 and 2, to be presented in Section 2.4, that the modification to the

original ATS is important in terms of accuracy and computational stability.

2.3. The statistical linearization

The SL technique is included in this subsection for completeness. Consider a class of general
nonlinear systems which can be described by the following equation of motion:

€y þ 2zo _y þ o2ð1þ �y2qÞy ¼ r, (1)

where q ¼ 1; 2; 3; . . . ; r ¼ p=m; � is the strength of nonlinearity, o is the corresponding linear
natural frequency, z is the damping ratio and m is the mass. Another form of Eq. (1) is

€y þ 2zo _y þ o2 1þ �
y

s

� �2q� �
y ¼ r, (2)

in which s2 ¼ pS=ð2zo3Þ with S being the spectral density of the zero-mean Gaussian white noise
excitation process. If the excitation is nonstationary random then the s2 is replaced by ðs2yÞmax
which is the maximum value of the variance of response for the corresponding linear system. In
general, the nonlinear single dof (sdof) oscillator can be described by

€y þ 2zo _y þ gðy; _y; �; tÞ ¼ r, (3)

where g, with the arguments being disregarded for conciseness, is the nonlinearity function of the
oscillator. In particular, with q ¼ 1 Eq. (2) becomes

€y þ 2zo _y þ gðyÞ ¼ r, (4)
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where

gðyÞ ¼ o2 1þ �
y

s

� �2� �
y. (5)

Applying the SL technique [2], Eq. (4) is approximated by an equivalent linear equation

€y þ 2zo _y þ o2eqy ¼ r, (6)

where oeq is the equivalent natural frequency of the system.
It can be shown that [2] the equivalent natural frequency oeq is given by

o2eq ¼ o2 1þ 3�
s2y
s2

 !" #
. (7)

Applying the SCD method [5] to Eq. (7), at time step ts; yields

o2eqðsÞ ¼ o2 1þ 3�
s2yðsÞ

s2

" #( )
, (8)

where s2yðsÞ is the variance of discretized response of the system while s; to be replaced by ðs
2
yÞmax;

is the maximum variance of response of the corresponding linear system. Eq. (8) was employed in
the SCD method [5] for the computation of responses of nonlinear oscillators. The equivalent
natural frequency oeq is updated at every time step [5] and consequently, it provides accurate
solution compared with that of the original nonlinear equation.
2.4. Numerical results

Results of two cases are presented. One is applied to assess the accuracy of the generalized
ESCD method for nonlinear systems under narrow band random excitations by way of
comparing results obtained by the generalized ESCD method with those of MCS. Results for the
other case are employed for the study of effects of band widths of the excitation processes on the
responses of the nonlinear systems. It may be appropriate to mention that at every time step
various terms in Section 2 of the companion paper [1] have to be updated due to the nonlinear
behavior of the system. These terms are Ryðs � 1Þ;Gðs � 2Þ;Hðs � 2Þ;Rf ðs � 2Þ;N1y;N2y and N3y:
With reference to Eq. (3) of the companion paper [1] the variances and covariances of responses
considered here and subsequently in this paper are those with zero time lag.
2.4.1. Comparison of generalized ESCD method and MCS

This subsection aims at assessing the importance and relevance of the modified ATS in the
computation of the nonlinear response. The governing equation of the Duffing oscillator is Eq. (2)
with q ¼ 1.0. The parameters for these tests are: mass of the system, Ms ¼ m ¼ 1:0 kg, natural
frequency corresponding to the linear system, os ¼ 1.0 rad/s, mass of the sdof filter, Mf ¼ 1.0 kg,
of ¼ 1.0 rad/s, zs ¼ 1.25%, zf ¼ 1.0%, and s2 in Eq. (2) is replaced by ðs2yÞmax ¼ 22105m

2;
which is the maximum value of the variance of displacement response of corresponding linear
oscillator.
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The inputs to the filter are modulated zero-mean Gaussian white noise defined by

p ¼ eðtÞwðtÞ; eðtÞ ¼ 4:0ðe�0:05t � e�0:1tÞ; hw2ð0Þi ¼ 2pS0, (9)

where S0 ¼ 1:0 and ðs2yÞmax is employed to normalize the nonlinear coefficient.
The responses of the filter are used as inputs to the system directly. For the MCS, 200

realizations, each of which has 25,600 points, were considered. The time taken by the MCS is
40min on average while the generalized ESCD method takes less than a second. Results were
obtained with the SGI machine mentioned in the companion paper [1]. The computed results are
presented in Figs. 1–3. The nonlinear coefficients or nonlinear intensity parameters � of Figs. 1–3
are 5.0, 0.05 and 80.0, respectively. Figs. 1 and 2 present results computed by the modified and
original ATS, respectively. The parameters of filter and system are the same. Note that in these
and subsequent figures MCS represents results from MCS while SCD designates data computed
by using the generalized ESCD method with modified ATS. Figs. 1 and 2 clearly demonstrated the
Fig. 1. Response variance of Duffing oscillator under narrow band nonstationary random excitation with of ¼ 1.0 rad/

s, zf ¼ 0.01, os ¼ 1.0 rad/s, zs ¼ 0.01, � ¼ 5.0; MCS (�), and SCD (&).

Fig. 2. Computational instability of response variance of Duffing oscillator with of ¼ 1.0 rad/s, zf ¼ 0.01,

os ¼ 1.0 rad/s, zs ¼ 0.01, � ¼ 0.05. SCD (&).
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Fig. 3. Response variance of a Duffing oscillator with of ¼ 1.0 rad/s, zf ¼ 0.01, os ¼ 1.0 rad/s, zs ¼ 0.01, � ¼ 80.0;
MCS ð�Þ; and SCD ð&Þ:
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importance of employing the generalized ESCD method with modified ATS. The latter gives
accurate results and does not give rise to computational instability which can occur in results
obtained by applying the generalized ESCD with the unmodified or original ATS. Figs. 1 and 3
show very good agreement between results by the generalized ESCD method with modified ATS,
and those by the MCS. Note that the amplitudes of responses decrease with increasing nonlinear
coefficient. This is because the equivalent natural frequency increases with increasing nonlinear
coefficient. It is also observed that the number of multiple peaks increases with the increase of
nonlinear coefficient. An explanation is that when the value of the nonlinear coefficient increases,
the natural frequency of the system shifts away from resonance at a higher rate, and therefore, the
amplitude of response reduces temporally. Once the amplitude is reduced, the natural frequency
of the system returns to resonance again and so another peak appears. This will continue until the
input to the system vanishes. Note that in Fig. 3 the nonlinear coefficient is � ¼ 80. This large
nonlinear coefficient is, of course, not realistic. However, such a large nonlinear coefficient is
applied to test the capability of the ESCD method with the modified ATS. The foregoing
computed results show that the proposed approach of employing the generalized ESCD method
with modified ATS can provide very accurate solution for large nonlinear problems without
encountering computational instability.
In closing, Fig. 2 demonstrates the importance of the modified ATS. When the normalized

nonlinearity reaches � ¼ 5.0, the computed solution becomes unstable if the original ATS was
applied. This is because once the nonlinearity becomes larger, the difference between two adjacent
time step sizes also increases and so does the error due to the lack of the adjustment of the time
steps. During the numerical experiments it was observed that with the adjustment the normalized
nonlinearity � can reach as large as 100 and yet the solution was still stable.

2.4.2. Effect of bandwidth of excitation process on responses

This case is concerned with the study of the effect of bandwidth of the excitation process on
responses. A secondary objective of the study is the effect of nonlinearity on responses. The
narrow band excitation to the system is defined by Eqs. (9), whereas the white noise excitation to
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the system is given by

p ¼ eðtÞ
ffiffiffi
I

p
; eðtÞ ¼ 4:0ðe�0:05t � e�0:1tÞ; I ¼ 2p. (10)

The time step size evaluated by Eq. (10) in the companion paper [1] is incorporated in the source
code of the digital computer program developed for the present investigation so that the time step
size is calculated according to the natural frequency at every time step. Computed results are
presented in Figs. 4–8, in which WB denotes wide band results while NB refers to solution due to
narrow band random excitations. The pertinent parameters are listed in Table 1. In the latter the
subscript f denotes the filter, that is, the narrow band process, while the subscript s represents the
system. From these figures, one notices that all responses to the narrow band process have
multiple peaks. The explanation of this phenomenon has been provided in the last subsection.
Comparing Fig. 4 with Fig. 5, and Fig. 6 with Fig. 8, it is observed that the difference between
Fig. 4. Effect of bandwidth on response variance of a nonlinear oscillator with of ¼ 1.0 rad/s, zf ¼ 0.01, os ¼ 1.0 rad/

s, zs ¼ 0.01, � ¼ 5.0; wide band (
), and narrow band (’).

Fig. 5. Effect of bandwidth on response variance of a nonlinear oscillator with of ¼ 1.0 rad/s, zf ¼ 0.01, os ¼ 1.0 rad/

s, zs ¼ 0.01, � ¼ 10.0; wide band (
), and narrow band (’).
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Fig. 6. Effect of bandwidth on response variance of a nonlinear oscillator with of ¼ 3.0 rad/s, zf ¼ 0.01, os ¼ 3.0 rad/

s, zs ¼ 0.01, � ¼ 1.0; wide band (
), and narrow band (&).

Fig. 7. Effect of bandwidth on response variance of a nonlinear oscillator with of ¼ 3.0 rad/s, zf ¼ 0.01, os ¼ 3.0 rad/

s, zs ¼ 0.01, � ¼ 5.0; narrow band (
), and wide band (&).

Fig. 8. Effect of bandwidth on response variance of a nonlinear oscillator with of ¼ 3.0 rad/s, zf ¼ 0.01, os ¼ 3.0 rad/

s, zs ¼ 0.01, � ¼ 10.0; narrow band (
), and wide band ð&Þ:

Z. Chen, C.W.S. To / Journal of Sound and Vibration 287 (2005) 459–479466
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Table 1

Parameters of systems for comparison

Parameters �

Ms ¼ 1.0 kg, os ¼ 1.0 rad/s, zs ¼ 1.0%, S0 ¼ 1.0, I ¼ 1.0, 5.0

of ¼ 1.0 rads/s, zf ¼ 1.0%, ðs2yÞmax ¼ 1488m
2 10.0

Ms ¼ 1.0 kg, os ¼ 3.0 rad/s, zs ¼ 1.0%, S0 ¼ 1.0, I ¼ 1.0, 1.0

of ¼ 3.0 rad/s, zf ¼ 1.0%, ðs2yÞmax ¼ 46.15m
2 5.0

10.0

Z. Chen, C.W.S. To / Journal of Sound and Vibration 287 (2005) 459–479 467
responses to narrow band and to wide band excitations decreases with increasing linear natural
frequency as well as increasing nonlinear stiffness coefficient. Furthermore, comparing Figs. 6–8,
one notices that these results are consistent with the finding in the last subsection. That is,
the higher the nonlinear coefficient is, the more peaks the response has to narrow band
random excitation.
3. Generalization of extended stochastic central difference for multi-degrees-of-freedom nonlinear

systems

Having established the accuracy and usefulness of the generalized ESCD method incorporating
SL technique and modified ATS for sdof nonlinear systems, in this section the proposed approach
is applied to mdof nonlinear systems. Examples of the latter are nonlinear structural systems
approximated by the FEM. The mdof nonlinear system has been investigated and reported in Ref.
[7] in which the excitations are modulated Gaussian white noise processes. The focus of this
section is on the application of the generalized ESCD method to the nonlinear mdof system under
narrow band nonstationary random excitations.
By employing the SCD method, recursive expressions of responses of the mdof nonlinear

system under modulated Gaussian white noise excitations have been derived [7]. In the latter
reference, several schemes of obtaining the equivalent linear terms by applying the SL technique
have been studied and discussed. Various techniques of dealing with the nonzero time-dependent
mean of responses were investigated and Scheme IV of Ref. [7] has proved to be the most
appropriate algorithm in that it requires less algebraic manipulation and also less computational
time with excellent accuracy. Therefore, Scheme IV of Ref. [7] is adopted in this section.

3.1. Statistical linearization for multi-degrees-of-freedom nonlinear systems

For tractability and without loss of generality, the 2dof system shown in Fig. 9 is considered.
The system is subjected to a narrow band nonstationary random excitation at its base and the
restoring force of the spring connecting the two masses M1 and M2 has quadratic and cubic
nonlinear terms associated with, respectively, parameters Z0 and �0: This 2dof system under a
modulated white noise excitation was studied and reported in Refs. [3,7,8]. Practical examples that
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Fig. 9. 2dof nonsymmetric nonlinear system.

Z. Chen, C.W.S. To / Journal of Sound and Vibration 287 (2005) 459–479468
can be modeled by the system in Fig. 9 are soil–structure interaction system, and a primary
building structure with a secondary system representing installed equipment under an earthquake
excitation.
If one introduces relative displacements such that Y 1 ¼ y1 � y0 and Y 2 ¼ y2 � y1; where y0; y1

and y2 are, respectively, the absolute displacements with respect to the base, the matrix equation
of motion can be expressed as [3,7,8]

1 0

0 1

" #
€Y 1

€Y 2

( )
þ

2z1W �2mz2

�2z1W 2ð1þ mÞz2

" #
_Y 1

_Y 2

( )
þ

W 2 �m

�W 2 1þ m

" #
Y 1

Y 2

( )

þ
mZY 2

2 � m�Y 3
2

ð1� mÞZY 2
2 þ ð1þ mÞ�Y 3

2

( )
¼

� €y0

0

( )
¼

eðtÞ
ffiffiffi
I

p

0

( )
, ð11Þ

or written in a more compact form,

M €Y þ C _Y þ K0Y þ gðY Þ ¼ rðtÞ, (12)

where

M ¼
1 0

0 1

� �
; C ¼

2z1W �2mz2
�2z1W 2ð1þ mÞz2

" #
,
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K0 ¼
W 2 �m

�W 2 1þ m

" #
; gðX Þ ¼

mZY 2
2 � m�Y 3

2

ð1� mÞZY 2
2 þ ð1þ mÞ�Y 3

2

( )
,

Y ¼
Y 1

Y 2

( )
; rðtÞ ¼

eðtÞ
ffiffiffi
I

p

0

( )
,

and where the over-dot and double over-dot denote, respectively, the first and second derivatives
with respect to t: In Eq. (11) the nonstationary random excitation is represented as a product of a
deterministic amplitude modulating function eðtÞ and a zero-mean narrow band random process
which is related to the response from the filter. Note that the following definitions have been
applied in Eqs. (11) and (12):

o21 ¼ K1=M1; o22 ¼ K2=M2; 2z1o1 ¼ C1=M1; 2z2o2 ¼ C2=M2,

Z ¼ Z0=M2o22; � ¼ �0=M2o22; m ¼ M2=M1; W ¼ o1=o2; t ¼ o2t, (13)

such that Eqs. (11) and (12) are dimensionless. For easy reference, notations used here are
identical to those in Refs. [3,7]. Therefore, the symbol t in this section should not be confused with
the t used in the time coordinate transformation (TCT) [3].
The discretization of Eq. (12) in the t domain leads to

M €Y s þ C _Y s þ K0Y s þ gðY sÞ ¼ rs, (14)

where the subscript s is a positive integer denoting the time step ts; such that Dt ¼ tsþ1 � ts and
t0 ¼ 0:
Since this is a nonlinear system, the ensemble averages of its responses, in general, are nonzero

and time dependent even if the excitations are of zero ensemble averages. Assume that the
responses at every time step are Gaussian. Eq. (14) can be represented by the linearized equation

M €Y s þ C _Y s þ KeqY s ¼ f s, (15)

where Keq is the equivalent stiffness matrix which is time dependent. It is determined by the
equation

ðKeqÞij ¼ ðK0Þij þ
qgiðY ðsÞÞ

qY jðsÞ

� 
; i; j ¼ 1; 2. (16)

Upon substituting the nonlinear term gðY Þ into Eq. (16) and carrying out the operation one has
[3]

Keq ¼ KeqðsÞ ¼ K0 þ
0 2mZhY 2ðsÞi þ 3m�hY 2

2ðsÞi

0 2ð1� mÞZhY 2ðsÞi þ 3ð1þ mÞ�hY 2
2ðsÞi

" #
. (17)

With Eq. (17), one can then apply the generalized ESCD method to Eq. (15) and carry out the
mathematical operation to obtain the recursive expression which is identical to that described in
Section 2 of the companion paper [1]. The modified ATS has to be employed with the generalized
ESCD method to update the Keq at every time step.
For the derivation of a recursive ensemble average expression, if Eq. (15) of Ref. [3] is directly

applied it would result in a zero ensemble average of response even though the system is nonlinear.
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This is because the ensemble average of Eq. (15) of Ref. [3] leads to

m̄ðs þ 1Þ ¼ N2yðsÞm̄ðsÞ þ N3ym̄ðs � 1Þ. (18)

If the system starts from rest, one obviously has the initial conditions

m̄ð0Þ ¼ m̄ð1Þ ¼
0

0

� �
; Ryð0Þ ¼ Ryð1Þ ¼

0 0

0 0

� �
; Dyð0Þ ¼

0 0

0 0

� �
, (19)

which would lead to an incorrect zero ensemble average. To avoid this problem, the gðY Þ term of
Eq. (12) can be moved to the right-hand side (RHS) such that

M €Y ðsÞ þ C _Y ðsÞ þ K0Y ðsÞ ¼ rðsÞ � gðY ðsÞÞ. (20)

Substituting the central difference approximation of velocity and acceleration terms,

_Y ðsÞ ¼
1

2Dt
½Y ðs þ 1Þ � Y ðs � 1Þ,

€Y ðsÞ ¼
1

ðDtÞ2
½Y ðs þ 1Þ � 2Y ðsÞ þ Y ðs � 1Þ, (21)

into Eq. (20) one has

Y ðs þ 1Þ ¼ N̄2yY ðsÞ þ N3yY ðs � 1Þ þ ðDtÞ2N1yrðsÞ � ðDtÞ2N1ygðY ðsÞÞ, (22)

where

N̄2y ¼ N1y½2M � ðDtÞ2K0. (23)

Taking the ensemble average of Eq. (22) one obtains

m̄ðs þ 1Þ ¼ N̄2ym̄ðsÞ þ N3ym̄ðs � 1Þ � ðDtÞ2N1yhgðY ðsÞÞi, (24)

hgðY ðsÞÞi ¼
mZhY 2ðsÞ

2
i � m�½3hY 2ðsÞihY 2ðsÞ

2
i � 2hY 2ðsÞi

3

ð1� mÞZhY 2ðsÞ
2
i þ ð1þ mÞ�½3hY 2ðsÞihY 2ðsÞ

2
i � 2hY 2ðsÞi

3

( )
.

Substituting Eq. (19) into Eq. (3) of the companion paper [1], and Eqs. (18) and (24) one can
show that

Ryð2Þ ¼ ðDtÞ4N1yRf ð1ÞN
T
1y; m̄ð2Þ ¼

0

0

� �
, (25a,b)

m̄ð3Þ ¼ �ðDtÞ2ZhX 2ðsÞ
2
iN1y

m

1� m

( )
. (25c)

As soon as the above nonzero ensemble averages are calculated, one can return to Eq. (18). For
s43, Eq. (18) can be applied to obtain the nonzero ensemble averages. Then the recursive mean
squares can be computed with Eq. (3) of the companion paper [1].
Numerical examples are presented in the next two subsections. Parameters of the system are

W ¼ m ¼ 1:0; z1 ¼ z2 ¼ 0:1. (26)
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The two natural frequencies of the corresponding linear system, that is when Z and � are both
equal to zero, are os1 ¼ 0.618 rad/s and os2 ¼ 1.618 rad/s. The amplitude modulating function
eðtÞ is

eðtÞ ¼ 4ðe�0:05t � e�0:1tÞ. (27)
3.2. Narrow band responses with sdof filter

Numerical results presented in this subsection include two examples. The first example is the
one with the center frequency of of ¼ 1:0 and the second is with of ¼ 1:618: Each example
includes a 2dof system described in the last subsection and a single dof filter. The latter has a
dimensionless natural frequency equal to one of the corresponding linear dimensionless natural
frequencies of the nonlinear system. The other has a dimensionless natural frequency which is
between the two corresponding linear dimensionless natural frequencies of the nonlinear system.
Damping ratios of the sdof filter for three cases were zf ¼ 0:01; 0.1 and 1.0. The narrow band

random excitation to the system was the response taken directly from the filter which was
perturbed by a nonstationary Gaussian white noise. The spectral density of the Gaussian white
noise was S0 ¼ 0:00012: The narrow band nonstationary random excitation to the system was
applied at its base. Results by the MCS were also obtained for comparison to those by the
generalized ESCD method. In the MCS 200 realizations, each having 25,600 points, were
considered. It should be mentioned that in the following, the results obtained by the generalized
ESCD method or simply called the ESCD method are those obtained with the ESCD method and
modified ATS. Other system parameters were: Z ¼ �1:0 and � ¼ 1:5; and were included in the last
subsection. Computed results are shown in Figs. 10–14. It was observed that the case where
of ¼ 1:0 and zf ¼ 0:01 became computationally unstable in both the ESCD method and MCS.
An attempt was also made to compute responses of the system excited by a narrow band process
with of ¼ 0:618: In this case, computational instability occurred when zf equaled to 0.01 and 0.1.
Note that the spectral density of the white noise was one order of magnitude smaller than what
Fig. 10. Response variances and covariance of a nonlinear 2dof system with of ¼ 1.0, zf ¼ 0.1. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ð
Þ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (þ).



ARTICLE IN PRESS

Fig. 11. Response variances and covariance of a nonlinear 2dof system with of ¼ 1.0, zf ¼ 1.0. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ðþÞ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (
).

Fig. 12. Response variances of a nonlinear 2dof system with of ¼ 1.618, zf ¼ 0.01. hY 2
1i SCD (�), hY

2
2i SCD ð&Þ; hY 2

1i

MCS ð�Þ; and hY 2
2i MCS(’).

Fig. 13. Response variances of a nonlinear 2dof system with of ¼ 1.618, zf ¼ 0.1. hY 2
1i SCD (�), hY

2
2i SCD ð&Þ; hY 2

1i

MCS ð�Þ; and hY 2
2i MCS(’).
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Fig. 14. Response variances and covariance of a nonlinear 2dof system with of ¼ 1.618, zf ¼ 1.0. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ðþÞ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (
).
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was used in Ref. [3]. This is because when S0 ¼ 0:0012 was used, the response of the system
becomes unstable. In Figs. 12 and 13, for clarity, covariances of responses were not presented
because they were very close to the variance hY 2

2i:
From the figures, one observes that the results by the ESCD method have an excellent

agreement with those using the MCS. Applying the same SGI machine as in the last section, the
computational time employing the ESCD method was approximately 15 s, while that for the MCS
was about 57min. Consequently, one can conclude that the ESCD method is very efficient and
accurate.

3.3. Narrow band responses with 2dof filter

This subsection deals with a 2dof system with a 2dof filter. Two cases are presented. The
parameters of the 2dof system are identical to those in the last subsection. The parameters of the
filters for the two cases are, respectively,

Mf ¼
1:0 0:0

0:0 1:0

� �
; Kf ¼

4:0 �1:0

�1:0 2:0

� �
; Cf ¼ lkKf ,

where lk is a constant which is different in every example, and

Mf ¼
1:0 0:0

0:0 1:0

� �
; Kf ¼

6:0 �2:0

�2:0 4:0

� �
; Cf ¼ lkKf .

Other parameters of filter and system are listed in Table 2. The 2dof narrow band random
excitations were the responses from the filter which was perturbed by a single modulated Gaussian
white noise. The modulating function was that defined by Eq. (27) while the spectral density of the
white noise was chosen as S0 ¼ 0:0012: Once again, the MCS results are employed for comparison
to those by the generalized ESCD method. The objectives of the two cases were to examine the
generalized ESCD method in terms of the responses of the system under narrow band
nonstationary random excitations for the 2dof filter. In the original SCD method for wide band
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Table 2

Parameters of system and filter

Filter System

Case no. lk Z �

Case 1 0.02 �0.001 0.0015

0.20 �0.001 0.0015

2.00 �1.0 1.5

Case 2 0.02 �0.001 0.0015

0.20 �0.001 0.0015

2.00 �1.0 1.5

Fig. 15. Response variances of a nonlinear 2dof system for case 1 with lk ¼ 0.02. hY 2
1i SCD (�), hY

2
2i SCD ð&Þ; hY 2

1i

MCS ð�Þ; and hY 2
2i MCS(’).
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nonstationary random excitations, the terms for correlations of responses and excitations
were zero [5,7]. It should be emphasized that in the generalized ESCD method, the corre-
lations of responses and excitations could not be disregarded and therefore were retained in the
studies.
Computed results by the generalized ESCD method and MCS are included in Figs. 15–20. Note

that for clarity the covariances of responses in Figs. 15 and 18 are not included. From the figures,
one can draw similar conclusions to those given in the previous section.

3.4. Effect of bandwidths of excitation processes

The examples in this subsection were included to demonstrate the effect of band widths of
random excitations. The system, under a single narrow band nonstationary random excitation
whose modulating function is that defined by Eq. (27), was considered. That is, the amplitude of
the input to the system was controlled by the modulating function and the constant ðIÞ1=2: The
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Fig. 17. Response variances and covariance of a nonlinear 2dof system for case 1 with lk ¼ 2.0. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ðþÞ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (
).

Fig. 18. Response variances of a nonlinear 2dof system for case 1 with lk ¼ 0.02. hY 2
1i SCD (�), hY

2
2i SCD ð&Þ; hY 2

1i

MCS ð�Þ; and hY 2
2i MCS(’).

Fig. 16. Response variances and covariance of a nonlinear 2dof system for case 1 with lk ¼ 0.2. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ðþÞ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (
).
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Fig. 20. Response variances and covariance of a nonlinear 2dof system for case 2 with lk ¼ 2.0. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ðþÞ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (
).

Fig. 19. Response variances and covariance of a nonlinear 2dof system for case 2 with lk ¼ 0.2. hY 2
1i SCD ð�Þ; hY 2

2i

SCD ð&Þ; hY 1Y 2i SCD ðþÞ; hY 2
1i MCS ð�Þ; hY 2

2i MCS ð’Þ; and hY 1Y 2i MCS (
).

Z. Chen, C.W.S. To / Journal of Sound and Vibration 287 (2005) 459–479476
constant I ¼ 0:00012
 2p: The center frequency and bandwidth of the narrow band excitation
process were controlled by the filter. The 2 sdof filters adopted in this subsection included one with
dimensionless natural frequency of 1.0 and the other with 1.618. Damping ratios of each of the 2
sdof filters were 0.01, 0.1 and 1.0.
Computed responses of the system subjected to modulated zero mean Gaussian white noise are

also presented so as to compare with those from the system under narrow band excitations.
The system parameters were Z ¼ �1:0; � ¼ 1:5; and other pertinent data have already
been provided in Section 2.4. Results for various damping ratios are presented in Figs. 21–23.
From the figures, one observes that the amplitudes of system responses increase with decreasing
bandwidth of the narrow band nonstationary random excitation. Compared with those of the
modulated Gaussian white noise excitations, the responses of narrow band random excitations are
much larger.
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Fig. 21. Effect of bandwidth on response variances of a nonlinear 2dof system with of ¼ 1.0, narrow band zf ¼ 0.01

(þ), zf ¼ 0.1 (’), and zf ¼ 1.0 (�): (a) variances of Y 1; (b) variances of Y 2; (c) covariances of Y 1 and Y 2:
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4. Concluding remarks

The generalized extended stochastic central difference (ESCD) method was applied to the
response analysis of a single degree-of-freedom (dof) nonlinear system and a 2dof nonsymmetric
nonlinear system under narrow band nonstationary random excitations. It combines the ESCD
method presented in the companion paper [1], the statistical linearization (SL) technique [2,5],
modified adaptive time scheme (ATS) [3], and time coordinate transformation (TCT) [4] so that
responses of stiff systems with large nonlinearities can be obtained without encountering
computational instability. The latter frequently appears in techniques employing the conventional
SL [2].
It has been demonstrated that numerical results computed by the generalized ESCDmethod are

in excellent agreement with those by the Monte Carlo simulation (MCS). It is also very efficient
compared with the MCS. Typically, the ratio of computational time employing the proposed
approach to that of MCS for a 2dof nonlinear system is 1 to 200. The effect of bandwidths of
excitation processes was also studied. It is observed that the amplitudes of system responses
increase with decreasing bandwidth.
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Fig. 23. Effect of bandwidth on response variances of a nonlinear 2dof system with of ¼ 1.618, narrow band zf ¼ 1.0

(�), and wide band (�): (a) variances of Y 1; (b) variances of Y 2:

Fig. 22. Effect of bandwidth on response variances of a nonlinear 2dof system with of ¼ 1.618, narrow band zf ¼ 0.01

(�), and zf ¼ 0.1 (�): (a) variances of Y 1; (b) variances of Y 2; (c) covariances of Y 1 and Y 2:

Z. Chen, C.W.S. To / Journal of Sound and Vibration 287 (2005) 459–479478
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An interesting observation is that responses of nonlinear systems to narrow band processes
have multiple peaks as the natural frequencies of nonlinear systems are changing with the
responses of the systems. Furthermore, for the systems studied here it was found that the higher
the nonlinear coefficient � was, the more peaks the variances of responses contained. The peaks of
the variances of responses became smaller with higher �: The results presented also lead one to
conclude that for accurate response prediction the correct representation of the bandwidths of the
random excitations is strictly necessary.
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